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Hyperspectral remote-sensed data were obtained via a Compact Airborne Spectrographic Imager-II (CASI-II) and used to
estimate leaf-area index (LAI) and aboveground biomass of a highly invasive weed species, yellow starthistle (YST). In
parallel, 34 ground-based field plots were used to measure aboveground biomass and LAI to develop and validate
hyperspectral-based models for estimating these measures remotely. Derivatives of individual hyperspectral bands
improved the correlations between imaged data and actual on-site measurements. Six derivative-based normalized
difference vegetation indices (DNDVI) were developed; three of them were superior to the commonly used normalized
difference vegetation index (NDVI) in estimating aboveground biomass of YST, but did not improve estimates of LAI.
The locally integrated derivatives-based vegetation indices (LDVI) from adjacent bands within three different spectral
regions (the blue, red, and green reflectance ranges) were used to enhance absorption characteristics. Three LDVIs
outperformed NDVI in estimating LAI, but not biomass. Multiple regression models were developed to improve the
estimation of LAI and aboveground biomass of YST, and explained 75% and 53% of the variance in biomass and LAI,
respectively, based on validation assessments with actual ground measurements.
Nomenclature: Yellow starthistle, Centaurea solstitialis L.
Key words: Invasive species, hyperspectral remote sensing, airborne hyperspectral data, vegetation index, biophysical
estimation.

Yellow starthistle (YST) is a highly invasive exotic weed that
is found throughout the western United States. It occurs
primarily in agricultural rangelands, but also native grasslands,
orchards, vineyards, pastures, roadsides, and wastelands. YST
lowers yield and forage quality, reduces land value, and
decreases water availability (Benefield et al. 2001; DiTomaso
2000; Harrod and Taylor 1995; Maddox 1981; Maddox et al.
1996). Control measures aimed at reducing YST populations
have not been entirely successful. Better regional assessment
and area-wide management techniques are needed to develop
long-term sustainable management strategies to control YST
(Carruthers 2003; DiTomaso et al. 2000).

Although traditional ground-based surveys can be used to
assess and monitor invasive plants, surveys are labor intensive
and have obvious limitations at landscape or larger scales due
to high spatial variation of invasive plants and vast areas where
such invasions occur (e.g., the California Department of Food
and Agriculture now estimates that nine million ha of
rangeland in the state is infested with YST). Studies have
demonstrated that remote sensing can provide useful and
reliable information on the infestation area and even detect
the phenological stage of the target vegetation (Ge et al. 2006;
Lass et al. 2005). Such information can be important for
managers in assessing control options and as a warning tool
for examining impacts of various invasive species (Anderson
et al. 2005; Everitt et al. 1995, 1996; Ge et al. 2006; Lass
et al. 2005).

Previous research has explored the capability of using
remote sensing to identify invasive plants and to estimate
infestation coverage (Lass et al. 2005). Multispectral remote
sensing with moderate spatial resolution, such as Landsat and
SPOT imagery, has been used to detect the location of
invasive species and to monitor the spread through time.
However, because of the relatively coarse spatial and spectral
resolution of SPOT and Landsat, these images have not been
used successfully to identify and assess invasive herbaceous
weeds (Everitt et al. 1995).

Airborne hyperspectral remote sensing offers an improved
method to estimate important vegetation attributes at fine
spatial resolutions (Bongers 2001; Cohen et al. 2002; Kerr
and Ostrovsky 2003; Schmidtlein 2005; Turner et al. 2003;
Vane and Goetz 1993). Hyperspectral remote-sensing data
acquire imagery in many narrowly contiguous spectral bands
and offer a more detailed view of the spectral properties from
the ground targets than those data from the conventional
multispectral bands, which are collected in a wide and
sometimes noncontiguous band structure. However, because
of the influences of environmental factors such as water
content and nontarget vegetation in complex plant canopies,
relationships between biological attributes and hyperspectral
data are often masked and confounded by these factors
(Blackburn 1998, 1999; Chappelle et al. 1992; Peñuelas et al.
1994). Therefore, it has been suggested that spectral data
transformation using derivatives and pseudoabsorption, and
the development of new vegetation indices, could aid in
resolving these problems. Such techniques may minimize
these influences and enhance relationships between important
vegetation attributes and imaged data, especially in situations
where only slight differences in vegetation cover are involved,
as is often the case with invasive plant species (Blackburn
1998, 2002; Chen et al. 1998; Elvidge and Chen 1995;
Peñuelas et al. 1994; Thenkabail et al. 2000; Tsai and Philpot
1998). Newly developed remote-sensing instruments and
algorithms may allow more accurate vegetation detection and
better characterization of specific habitat features, provide
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better and more timely assessments, and improve area-wide
vegetation management (Schmidtlein 2005).

Previous studies using airborne hyperspectral data have
demonstrated that it can be used to identify YST over large
areas (Lass et al. 1996, 2000, 2005). Hyperspectral remote
sensing can also be used to monitor YST flowering phenology,
which is important for assessment of biological control agent
synchrony and potential impacts on the target weed (Ge et al.
2006). To date, however, there have been no studies that use
hyperspectral remote-sensed data to estimate important
biophysical attributes of this invasive weed, such as LAI and
overall aboveground biomass. These biological attributes are
important to both weed scientists and land managers
interested in assessing YST infestation levels, population
trends through time, and in developing or parametrizing
population models and/or area-wide control strategies.

The objectives of this study were (1) to examine the
correlations between hyperspectral vegetation indices and two
important measurements of YST abundance, LAI and above-
ground biomass; (2) to estimate actual LAI and biomass and
compare on-the-ground measurements with the use of
multiple vegetation indices derived from hyperspectral data;
and (3) to combine these measures to assess the accuracy in
using remote-sensed data to estimate LAI and aboveground
biomass.

Materials and Methods

Study Area. A field study site was established along Bear
Creek (122u229560W, 39u009000N), northwest of the city of
Woodland in an area adjacent to and west of the Sacramento
Valley of northern California, United States. In the summer
of 2002, two ground-based data-collection plots were set up
within this area to assess the use of hyperspectral data to
develop estimation models of LAI and biomass. The plots
were located in areas with nearly pure stands of YST (. 95%
YST coverage). The only other plant material present in the
plots was dry annual grass, which was not visible through the
YST canopies. Within the study area, the field-measured LAI
ranged from 0.04 to 2.33 (mean square error [MSE] was
0.11) and biomass (determined as aboveground dry weight)
ranged from 50.42 to 71.27 g m22 (MSE was 6.36).

Field Experimental Design and Data Collection. In late
June 2002, two large 20-by-50–m modified Whittaker plots
(MWP) were established within the study area. The Whittaker
plot is designed for a multitiered vegetation sampling, and
consists of 12 subplots strategically located within each plot.
This sampling method has been modified to assess samples
from the heterogeneous vegetation composed of diverse
species combinations and/or varying densities of the target
plant (Kalkhan and Stohlgren 2000; Stohlgren et al. 1995). In
this study, we incorporated five additional 2-by-2-m2 subplots
in the middle of the standard MWP to increase the intensity
of ground-based sampling (refer to Ge et al. 2006, Figure 2).
In total, 34 subplots were established within the two MWPs.
A full-range spectrometer1 was used to measure canopy
reflectance randomly at approximately 20 cm above the
canopy within each subplot. The spectrometer probe acquired
data across a field of view of 25u and provided a representative
sample covering 61.73 cm2 within each subplot. The number
of spectral measurements in a subplot was approximately

10 times the root square of the subplot area (i.e.,
N & 10 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

areasubplot
p

). In addition, supplemental reflec-
tance measurements were collected over an asphalt road and
bare soil at 20 locations within 100 m of the two MWPs.
These reflectance curves were used to help calibrate the
airborne hyperspectral imagery collected by a Compact
Airborne Spectrographic imaging system-II (CASI-II).2

LAI was measured on the ground with the use of a plant
canopy analyzer (PCA)3 on the same day as the spectral data
were collected with the CASI-II. Aboveground biomass of
YST was measured within 3 d of the CASI-II flyover from
each of the 34 subplots with the use of 0.5-by-0.5–m quadrat
samples. All aboveground YST tissue in the quadrats was
harvested, bagged, and returned to the lab for processing.
Each biomass sample was individually weighed in the lab,
oven dried at 70 C for 72 h, and then weighed again to
acquire dry-weight biomass and the water content at harvest.

Hyperspectral images were acquired by the CASI-II on
June 30, 2002. At-sensor digital data were collected across 48
wavelength bands within a spectral range of 426.7 to
965.1 nm. Bandwidths ranged from 11.2 to 12.6 nm. The
images were taken at approximately 1,500 m above the
ground, resulting in a spatial resolution of 2 m per pixel. In
conjunction with the CASI-II image collection, high-re-
flectance corner markers were deployed 4 m away from the
vertices of each MWP. These markers were used to aid in
image rectification and plot boundary identification. A global
positioning system (GPS)4 with submeter accuracy was used
to measure the geographic coordinates of the plots and
subplots, allowing accurate determinations of the specific
locations of YST samples within each MWP. Additionally,
submeter-resolution GPS points were collected for all the soil
and asphalt sampling locations to correspond with reflectance
values collected over these sites.

Image Processing and Analysis. The ground-based re-
flectance curves acquired by the spectrometer over each
MWP subplot were averaged to obtain a canopy reflectance
(R) curve for each individual subplot. These 34 averaged
reflectance values, along with the 40 reflectance values
collected from over the asphalt-road and bare-soil areas,
were further processed to match the CASI-II bandwidths.
This was accomplished by merging the original ground-
based spectral data through a mean function (i.e.,

RCB ~
Xn

i~1
RSB =n

h i
), resulting in convoluted re-

flectance values for CASI-II bands from the ground re-
flectance as measured by the spectrometer. RSB are reflectance
values of the spectrometer covered by the matching CASI-II
band and n is the number of the corresponding bands of
spectrometer covered by the respective CASI-II band. CASI-
II data used in this study cover only the visible and the near-
infrared (NIR) regions of the spectrum, from 450 to 975 nm;
therefore, only the reflectance data from the ground-based
spectrometer that matched these CASI-II bands were used in
this analysis. In order to convert the raw hyperspectral images
to surface reflectance values, empirical models (Ben-Dor et al.
1994; Ben-Dor and Levin 2000) were developed for each
CASI-II band by regressing CASI-II digital data with the
corresponding convoluted spectral data of the different
ground targets (including YST, bare soil, and asphalt). The
CASI-II data (geographically tagged and spectrally adjusted
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pixels) representing the sampled YST plots and subplots were
extracted from the data set based on their locations measured
with the submeter GPS unit. With the use of these extracted
surface reflectance values from the selected areas, spectral
derivatives and two categories of vegetation indices (i.e.,
derivative-based normalized difference [DNDVI] and local
derivative vegetation indices [LDVI]) were calculated. The
correlations between these derivatives and vegetation indices
and the measured vegetation variables (LAI and aboveground
biomass) were assessed. These derivatives and vegetation
indices were calculated as follows:

Derivatives Based on Hyperspectral Images. Two types of
derivatives have been developed with hyperspectral reflectance
(Blackburn 1998; Yoder and Pettigrew-Crosby 1995):

DRi ~ (Riz1 { Ri{1)=BW ½1�

DLRi ~ (Log 1=Riz1½ �{ Log 1=Ri{1½ �)=BW ½2�
where DRi and DLRi are the derivatives at the ith band from the
reflectance and pseudoabsorption spectra, Ri + 1 and Ri - 1 are
the reflectance values of the (i + 1) and (i - 1) CASI-II bands,
respectively, and BW is the bandwidth. The Pearson coefficients
of correlation were used to determine derivatives of which
CASI-II bands could be used to estimate LAI and biomass.

Derivative-Based Normalized Difference Vegetation Indices
(DNDVI). These measures are similar to the broadband
NDVI that is often used in vegetation assessment with
multispectral images. In this case, DNDVIs were calculated
based on two derivatives, one from the reflectance and one
from the pseudoabsorption (reciprocal of reflectance) data for
each of the visible bands of interest (blue, green, and red
bands). In total, six different estimators of DNDVI were
produced as follows:

DNDVIRb ~
DRNIR { DRb

DRNIR z DRb
½3�

DNDVIPb ~
PDRNIR { PDRb

PDRNIR z PDRb
½4�

NDVIRRg ~
DRNIR { DRg

DRNIR z DRg
½5�

DNDVIPg ~
PDRNIR { PDRg

PDRNIR z PDRg
½6�

DNDVIRr ~
DR

NIR
{ DRr

DR
NIR

z DRr

½7�

DNDVIPr ~
PDR

NIR
{ PDRr

PDR
NIR

z PDRr

½8�

where DNDVIR and DNDVIP are individual vegetation
indices developed by assessing the derivatives of reflectance
and pseudoabsorption, respectively. The subscripts b, g, and r
indicate that the derivative used to develop the vegetation
index is selected from one of three visible spectral regions (i.e.,
blue, green, and red narrow bands, respectively) and that this
selected derivative is most highly correlated with LAI and

biomass, compared with derivatives of any other neighboring
wavelengths within the blue, green, and red regions. Similarly,
the selected derivatives of the near-infrared bands are also
highly correlated with LAI and aboveground biomass in the
NIR plateau.

Traditional NDVI values were also estimated with the use
of the narrowband hyperspectral data. These were compared
with the derivative-based vegetation indices and used to assess
correlations with YST LAI and biomass. In general, the red
and near-infrared bands used to estimate NDVI were chosen
from the red absorption peak around 670 to 680 nm and
the near-infrared plateau around 800 nm. In this study,
the corresponding bands centered specifically at 675.7 and
802.4 nm.

NDVI ~
R802:4 { R675:7

R802:4 z R675:7
½9�

The Local First-Order Derivative-Based Vegetation Indices
(LDVI). The first-order hyperspectral-based derivatives were
integrated along the slope of the red edge. The red edge is
located between the red and the near-infrared regions, and
reflectance of vegetation changes rapidly within this defining
spectral range. Estimates of these parameters have previously
been used to quantify green vegetative cover (Chen et al.
1998; Thenkabail et al. 2000). In this study, these derivatives
were modified to integrate the local absorption and reflectance
trends along the slopes of both the blue and red absorption
features and also to assess plant reflectance characteristics to
enhance the spectral patterns associated with YST LAI and
biomass. In order to differentiate these indices from the
normalized vegetation indices, we considered them as ‘‘local’’
derivative vegetation indices, which were calculated as:

LDVIR ~
Xln

l1

DRl { DRr½ � � BWi

0
@

1
A,Xln

l1

BWi ½10�

LDVIP ~
Xln

l1

PDRl{PDRr½ � � BWi

0
@

1
A,Xln

l1

BWi ½11�

where LDVIR and LDVIP are the first-order derivative
vegetation indices calculated from reflectance and pseudoab-
sorption, respectively. BWi is the bandwidth from band l1

(where the positive slope began) to band ln (where the slope
ended). DRr and PDRr are defined as the referenced
derivatives of reflectance and pseudoabsorption at the targeted
bands, which were the local minimum derivative values along
the slope of absorption or reflectance. The minimum values
for each parameter were determined from the spectra,
averaged over the data collected from all 34 MWP subplots.
These minimums were considered local baselines from which
the derivatives were integrated along the subsequent slopes.
Such indices captured local magnitudes of reflectance or
absorption relative to the nearest reference reflectance peak or
absorption center. In other words, they characterized the fine
differences in each of the measured spectral patterns rather
than the general band ratios, as is done in NDVI.

The position of the referred minimum derivative was
460.2 nm for the blue band. Within the blue wavelength
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region, the corresponding LDVI was calculated from the
spectral range of 460.2 to 493.9 nm, which was the area of
most importance in the blue absorption portion of the spectra.
Within the green bands (550.3 to 573.0 nm), the local
referenced position was 550.3 nm, which was at the point of
peak reflectance caused by the plant green tissues. Within the
red absorption area (641.3 to 675.7 nm), LDVI was
integrated with the use of a referenced derivative at
641.3 nm, which corresponded to an intense absorption by
chlorophyll.

Model Development. After calculating the derivatives (i.e.,
LDVIRs, LDVIPs, and LDVIs), their relationships to ground-
measured YST biomass and LAI were examined by testing for
significant correlation coefficients between the remote-sensed
and field-measured data. In order to reduce the colinearity of
the spectral data, a subset of the sample variables were first
selected with the use of Mallow’s Cp to develop a best-fit
model (Selvin 1998).

Cp ~
Xp

i~1

y{yp


 �2
.

s2 { nz2p ½12�

In this equation, yp is the predicted value of y from p
independent spectral indices that are correlated with YST LAI
and biomass. The parameter s2 is the mean-square error
(MSE) of the regression, and n is the sample size. By
minimizing Cp, the best subsets were selected from the
complete set of spectral variables that originally showed
significant correlation with YST LAI and biomass. The
selected subsets were then used to develop models with the use
of a cross-validation method (Venter and Snyman 1995). To
accomplish this, the 34 subplot samples were randomly
divided into seven groups. The model was then independently
derived seven different times. Each time, six groups were used
as training data to calibrate models for estimating LAI and
biomass. The seventh group was used as an independent test
group to validate the models. The model from which the error
was closest to the average error from the seven iterations was
selected as the best predictor. This process was implemented
with the use of the following function:

y ~ fi (xi)ze ½13�
where y is the predicted value estimated by the model using
the training groups, xi is one of the selected training variables,
and f is the corresponding linear function. The parameter e
represents the model error, indicating the difference between
the estimated values and the actual field-collected test data.

Results and Discussion

Correlations Between Hyperspectral Derivatives and
Vegetation Attributes. Hyperspectral derivatives improved
the relationships between remotely sensed spectral data and
LAI and biomass. Derivatives of reflectance performed better
at estimating LAI and biomass than derivatives of pseudoab-
sorption, although they both had high correlation coefficients.
The best single-band derivatives explained 50% and 56% of
the variance of LAI and biomass, respectively (Figure 1). The
original reflectance data were poorly correlated with LAI (r ,
0.50, P . 0.05); however, the derivatives within the blue (at
483 nm) and red (at 653 and 664 nm) spectral regions were

correlated (r 5 0.52, 0.71, and 0.59, respectively). Similarly,
derivatives of reflectance also enhanced the correlations with
LAI within the range of NIR bands, where the values of 10
bands, from 774.6 to 848.8 nm, were also correlated with LAI
(r 5 0.60 and 0.69, n 5 34, P , 0.01). It was found that
derivatives of pseudoabsorption of four bands (one in the blue
region, two in the red region, and one in the NIR region) were
correlated with LAI (r 5 0.50 to 0.60, P , 0.01). Based on
correlation analyses, we found that hyperspectral derivatives
were better than the original reflectance data in estimating
LAI.

Derivative transformations also enhanced the ability of
hyperspectral CASI-II data to estimate the aboveground
biomass of YST. There were high correlations between
derivatives and biomass at a few visible wave bands (r 5
0.52 to 0.65, P , 0.01, Figure 2). Compared with the
derivatives of reflectance, the derivatives of pseudoabsorption
were better correlated with biomass in the blue region. The
blue wave bands were located at 471.5, 482.7, and 493.9 nm
(r 5 2 0.64, 2 0.75, and – 0.71, respectively). Similarly, the
pseudoabsorption derivatives through most of the NIR bands
had strong correlations with biomass (r 5 0.54 to 0.67).

Figure 2. Correlation between derivative-based reflectance (DR) and pseudoab-
sorption (PDR) and biomass of yellow starthistle.

Figure 1. Correlation between derivative-based reflectance (DR) and pseudoab-
sorption (PDR) and LAI of yellow starthistle.
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Although the CASI-II imagery had both high spectral and
high spatial resolutions, YST LAI and biomass were not
correlated with the original spectra data. However, by
derivative transformations, correlations between spectral data
and the ground-based LAI and biomass were improved. For
individual narrow bands, the highest correlation coefficients
of derivatives approached 0.71, which was much better than
the correlations obtained using the original reflectance data. It
is further noted that the derivative estimators performed better
in the blue and red regions, presumably due to plant pigments
that enhanced absorption characteristics in these spectral
wavelengths (Blackburn 1998, 1999).

The derivatives of hyperspectral data have been widely used
to assess and estimate a variety of important vegetation
parameters, such as total chlorophyll, chlorophyll b, and
carotenoids of plants (Blackburn and Steele 1999). Although
some of these derivatives have very high correlations with key
biophysical attributes of plants, the correlation depends upon
the spectral wavelengths and biophysical variables under
study. As in our situation, these correlative spectral wave
bands are usually located in the blue and red absorption
ranges. Therefore, spectral derivatives not only minimize the
influences of external factors but also emphasize the spectral
effects of key plant components (Blackburn and Steele 1999;
Serrano et al. 2002).

Correlations Between Derivative-Based Vegetation Indices
and LAI /Biomass. Correlation coefficients between NDVI
and YST LAI and biomass were 0.43 and 0.64, respectively
(Table 1). Three DNDVI functions performed better in
estimating biomass of YST than commonly used NDVI.
These indices showed improved correlation with aboveground
biomass (r 5 0.71 to 0.72, P , 0.001). However, DNDVI
did not improve the relationship with LAI. DVBP, DVGP,
and DVRR showed better correlation with LAI than NDVI;
their correlation coefficients were 0.59, 0.47, and 2 0.66,
respectively (Table 2).

A previous case study demonstrated that hyperspectral-
based vegetation indices calculated from derivatives improved
the relationship between spectral data and vegetation
attributes. The first-order derivative green vegetation index
was strongly correlated with LAI of pinyon pines near Reno,

NV, having R2 values of 0.94. The derivative-based vegetation
index strongly improved the relationship between the spectral
data and LAI (Elvidge and Chen 1995). In this study,
hyperspectral vegetation indices developed from spectral
derivatives improved estimation of LAI and aboveground
biomass of YST from hyperspectral remotely sensed data.
Compared with the study case of pinyon pines, the derivative-
based indices did not have as strong a relationship with YST
LAI and biomass. However, this exploratory study has made
progress in using hyperspectral data to assess and monitor
species-level invasive plants, following previous applications of
using hyperspectral data to detect the presence of invasive
weeds, such as YST and spotted knapweed (Centaurea
maculosa Lam.) (Lass et al. 2005).

Modeling LAI and Aboveground Biomass. Although LAI
was correlated with 15 different indices calculated from the
CASI-II data, only five of the LDVIs and DNDVIs were
selected to develop a multiple estimation model. Wave bands
of these five variables were located from the red to the NIR
regions. All five variables were derivatives of reflectance values,
as no derivatives of pseudoabsorption or any other vegetation
index were used in the final model. This further confirmed
that derivatives of reflectance outperformed both pseudoab-
sorption-based vegetation indices and derivatives in estimating
YST LAI.

Similarly, we found that five spectral-derived variables were
selected in the model to estimate biomass of YST. Two of the
variables were reflectance-based derivatives in the NIR bands,
two were normalized reflectance-derived vegetation indices,
and one was from the pseudoabsorption-based LDVI. All the
variables and their corresponding coefficients that were used
in the final models to estimate LAI and biomass are
summarized in Table 3. When comparing P values, it was
found that the reflectance-based derivative at 652.8 nm was
more significant than any of the other selected predictors to
estimate LAI; and that the NDGR and DVBP performed
better in estimating the aboveground biomass of YST than
any of other three variables in the biomass estimation model.

Through the validation process using field-measured data,
it was found that CASI-II data could be used to estimate LAI
and aboveground biomass of YST remotely. The final

Table 1. Correlations between the derivative-based normalized vegetation indices (DNDVI) and LAI and biomass.

Biophysical
parameters DNBRa DNBPb DNGRa DNGPb DNRRa DNRPb NDVIc

LAI 0.40 0.00 0.39 0.42 0.37 2 0.48 0.43
Biomass 0.72 0.32 0.72 0.71 0.60 2 0.53 0.64

a DNBR, DNGR, and DNRR are derivative-based normalized difference vegetation indices that normalized reflectance derivatives of the chosen blue, green, and red
bands by the reflectance derivatives of the chosen NIR band, respectively.

b DNBP, DNGP, and DNRP are derivative-based normalized difference vegetation indices that normalized pseudoabsorption derivatives of the chosen green spectral
bands by the pseudoabsorption of the chosen NIR band.

c NDVI was developed by using a hyperspectral red band centered at 675.70 nm normalized by a NIR band centered at 802.40 nm.

Table 2. Correlations between the local integrative derivatives vegetation indices (LDVI) and LAI and biomass.

Biophysical parameters DVBRa DVBPb DVGRa DVGPb DVRRa DVRPb

LAI 20.25 0.59 2 0.22 0.47 2 0.66 2 0.10
Biomass 20.40 0.68 2 0.28 0.60 2 0.57 2 0.44

a DVBR, DVGR, and DVRR were the first-order derivative-based local vegetation indices developed by the reflectance derivatives in the blue, green, and red re-
gions, respectively.

b DVBP, DVGP, and DVRP are the first-order derivative-based local vegetation indices developed by the pseudoabsorption derivatives in the blue, green, and red
regions, respectively.
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estimation models explained 53% and 75% of the variance in
LAI and biomass, respectively (Figures 3 and 4). The
multiple-variable models had better estimation than any
single spectral band.

Although estimation models of LAI and biomass were both
determined to be significant, the LAI model explained 53% of
the LAI ground-measured variance. When the estimated and
ground-measured LAI values were compared, it was found
that errors of LAI estimation were not related to LAI levels
(Figure 3). The error may have been caused by leaf shape and
canopy architecture of YST. At the time of the year when this
imaging was conducted, the individual patch of YST had
a very open canopy structure and bolting plants often lacked
significant leaf structure. The uncertainty of LAI estimation
most likely resulted from small and irregular leaf shapes, in
a canopy with just a few round and narrow leaves growing on
the dense green branches. However, biomass estimation
revealed that hyperspectral derivative-based vegetation indices
are superior to a traditional vegetation index, NDVI.

Although some single-band spectral data and vegetation
indices often have strong relationships with important

biophysical factors of plants, it is not always possible to use
an individual spectral variable to estimate these attributes
accurately with the use of remote-sensed data. Therefore,
multivariate analysis is often used to select the optimal spectral
variables needed to develop accurate predictive models
(Cohen et al. 2002). Biological parameters may be correlated
with multiple narrowband spectral data and derived vegeta-
tion indices, due to underlying spectral characteristics
associated with plant components such as pigment and water
absorption. Therefore, to increase the estimation accuracies of
vegetation characteristics, such as LAI and biomass, it is
important to develop multiple-variable models by selecting
the best subset of spectral-based variables to avoid unnecessary
cross-correlation and colinearity.

Previous studies have shown that hyperspectral images can
be used to identify YST from surrounding vegetation (Lass et
al. 1996) and to assess its phenological stages (Ge et al. 2006).
This study demonstrated that the estimation of LAI and
biomass derived from hyperspectral imagery is feasible,
although there are still limitations in assessment that need
to be overcome, and improvements made in both the timing
of application and analysis of the acquired data in order to
apply this research readily to field management. Because this
was a single-year study conducted at a specific time, it will be
important to note that this study was done only in 1 year. It
will be important to replicate this study to verify these results
and to determine the robustness of derivative-based indices.
With further improvements in both equipment and method-
ology, these new tools may become an important component
of an integrated weed monitoring and management program.
This approach to estimating LAI and biomass may be a step in
developing a more effective and efficient method of acquiring
such biological attribute data over wide areas. When success-
ful, the resulting estimates may be extended via interpolation
and extrapolation to unsampled ground locations where
imagery is available. Such estimation can then be used to map
predicted YST distributions in space and time, and may
improve our understanding of key physical and chemical
attributes important for vegetation growth and management
(Borge and Leblanc 2000; Sims and Gamon 2002; Strachan et
al. 2002). The use of spatially explicit models to quantify the

Table 3. The selected variables in the calibration models to estimate LAI and
aboveground biomass of yellow starthistle.

Estimated
parameters Variables Coefficient P value

LAI Intercept 2 0.45 0.03
DR652.8 3.35*103 , 0.01
DR744.6 2 7.04* 103 0.02
DR767.7 9.52*103 0.02
DR814.0 2 2.01*104 0.04
DR825.6 1.99*104 0.01
RMSE: 0.28 Model’s R2 0.76

Biomass Intercept 2 2.83*102 , 0.01
DR814.0a 2 8.25*105 0.02
DR837.2 0.03
DNGRb 1.47.75*1054*103 , 0.01
DNRRb 2 9.04*102 0.02
DVBPb 9.09*104 0.01
RMSE: 19.44 Model’s R2 0.86

a DRXXX stood for the derivative of reflectance at the position of XXX (nm)
wavelength.

b DNGR, DNRR, and DVBP are the same as in Tables 1 and 2.

Figure 3. Comparison between the estimated and field-measured values of LAI
of yellow starthistle.

Figure 4. Comparison between the estimated and field-measured values of
biomass of yellow starthistle.
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growth and abundance of plants over a large area and to
evaluate long-term sustainable control strategies may be
possible in the future and deserves further evaluation
(Collingham et al. 1997, 2000; Wadsworth et al. 2000).

Sources of Materials

1 FieldSpec@ 3 (350 to 2,500 nm) Analytical Spectral Device
(ASD), Inc., 5335 Sterling Drive, Suite A, Boulder, CO 80301.

2 CASI-II VNIR spectrographic imaging system, ITRES Research
Limited, No. 110, 3553, 31st Street N.W., Calgary, Alberta
T2L2K7, Canada.

3 LI-COR LAI-2000, LI-COR Environmental, 4647 Superior
Street, P.O. box 4425, Lincoln, NE 68504.

4 The GeoXTTM high-performance submeter GPS receiver,
Trimble, 935 Stewart Drive, Sunnyvale, CA 94085.
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